Thermophysical characterization of earth blocks stabilized by cement, sawdust and lime

Sylvere Azakine Sindanne, Guy Edgar Ntamack, Roger Pierre Lemanle Sanga, Claude Armand Moubeke, Eric Sylvain Kelmamo Sallaboui, Hamid Bouabid, Khalifa Mansouri, Saad Charif D’ouazzane


DOI

Abstract


Several buildings throughout the world are built with blocks of compressed and stabilized ground. These blocks do not commonly have the same thermal properties necessary for their use. If the incorporation of stabilizer in these blocks like lime or cement increases the mechanical properties, it is not the case for the thermophysical properties. In this paper, the evolution of the thermal properties of earth blocks according to the rates of stabilizer and their nature was discussed. The experimental method of “hot iron” was applied. Results indicate that thermal conductivity increases when percentages of cement and lime increase. However, it decreases when the rates of the sawdust increase. Moreover, thermal resistance decreases according to the percentages of lime and cement, and increases according to the percentages of the sawdust.

Full Text:

PDF

References


Binici H, Aksogan O, Bodur MN, Akca E, Kapur S (2007). Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Constr. Build. Mater., 21(4):901-6.

Castets D, Iniesta H (1982) .Recherche d’une méthode de mesure des caractéristiques thermophysiques de la terre, matériaux de construction, TEF, ENTPE, Vaulx-en-Vellin.

De Chazelles CA, Alain K, Pousthomis N (2011). Les cultures constructives de la brique crue. Ecole Nationale Supérieure d'Architecture de Montpellier.

Fourier J (1988). Théorie analytique de la Chaleur, Firmin-Didot père et fils, Paris, 1822. Facsimile, Ed. Jacques Gabay, Paris.

Hakimi A, Fassi-Fehri O, Bouabid H, D'ouazzane SC, El Kortbi M (1999). Non-linear behaviour of the compressed earthen block by elasticity- damage coupling. Mater. Struct., 32(7), 539-45.

Khedari J, Watsanasathaporn P, Hirunlabh J (2005). Development of fibre-based soil–cement block with low thermal conductivity. Cement Concrete Comp., 27(1), 111-6.

Meukam P (2004). Valorisation des briques de terre stabilisées en vue de l’isolation thermique de bâtiments. Thèse de Doctorat, Université de Cergy Pontoise.

Nagasaka Y, Nagashima A (1981). Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot‐wire method. Rev. Sci. Instrum., 52(2):229-232.

Oladele I, Z (2003). Étude comparée des propriétés mécaniques et thermophysiques des briques en terre stabilisée au ciment et en argile cuite. Mémoire d’Ingéniorat, Université d’Abomey-Calavi, Benin.

Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961). Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys., 32(9):1679-84.

Pignal B (2005). Terre crue, Techniques de constructions et de restauration. Eyrolles, Paris.

Plat P (1989). Influence du matériau sur le métabolisme humain - Colloque Construire en Terre, matériau noble à la conquête de l'avenir, Toulouse, France.

Rigacci A, Ladevie B, Sallee H, Chevalier B, Achard P, Fudym O (2002). Measurements of comparative apparent thermal conductivity of large monolithic silica aerogels for transparent superinsulation applications. High Temp.-High Press., 34(5) : 549-60.

Zine-Dine K, Bouabid H, El Kortbi M, Charif-d'Ouazzane S, Hakimi A, Hammoumi A, Fassi-Fehri O (2000). Rheology of walls in compressed earth blocks in uniaxial compression: study et modelling. Mater. Struct., 33(8):529-36.


Article views 1197





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Civil Engineering and Architecture Faculty- University Amar Telidji of Laghouat JBMS@2019.